Peer-reviewed Publications

Peer-reviewed work validating smartphone-based behavioral measures and their associations with cognition, sleep/circadian patterns, and neurological research outcomes.

Contact usTalk to our science team
NeuroscienceNeurology
Sleep & Circadian Cognitive aging Digital engagement / Smartphone use

Neuroscience

‍Kock, R., Ceolini, E., Groenewegen, L., Ghosh, A. (2023).
Neural processing of goal and non-goal-directed movements on the smartphone

Van de Ruit, M. & Ghosh, A. (2022)
Can you hear me now? Momentary increase in smartphone usage enhances neural processing of task-irrelevant sound tones

Gindrat, A. D., Chytiris, M., Balerna, M., Rouiller, E. M., & Ghosh, A. (2015).
Use-dependent cortical processing from fingertips in touchscreen phone users.

Neurology (epilepsy, stroke, recovery)

‍van Nieuw Amerongen A. R., Meppelink A. M., Ghosh A., Thijs R. D. (2024)
Real-world smartphone data can trace the behavioural impact of epilepsy: A case study

Ceolini, E., Brunner, I., Bunschoten, J., Majoie, M.H.J.M., Thijs, R. D., Ghosh, A. (2022).
A model of healthy aging based on smartphone interactions reveals advanced behavioral age in neurological disease

Duckrow, R. B., Ceolini, E., Zaveri, H. P., Brooks, C., & Ghosh, A. (2021).
Artificial neural network trained on smartphone behavior can trace epileptiform activity in epilepsy

Sleep & Circadian

Ceolini, E. & Ghosh, A. (2023).
Common multi-day rhythms in smartphone behavior

Huber, R., & Ghosh, A. (2021).
Large cognitive fluctuations surrounding sleep in daily living.

Massar, S.A., Chua, X.Y., Soon, C.S., Ng, A.S., Ong, J.L., Chee, N.I., Lee, T.S., Ghosh, A. and Chee, M.W. (2021).
Trait-like nocturnal sleep behavior identified by combining wearable, phone-use, and self-report data.

Borger, J. N., Huber, R., & Ghosh, A. (2019).
Capturing sleep–wake cycles by using day-to-day smartphone touchscreen interactions.

Cognitive aging

Ceolini, E., Ridderinkhof R., Ghosh, A. (2024)
Age-related behavioral resilience in smartphone touchscreen interaction dynamics

Ceolini, E., Kock, R., Band, G. P. H., Stoet, G., Ghosh, A. (2022).
Temporal clusters of age-related behavioral alterations captured in smartphone touchscreen interactions

Ceolini, E., Brunner, I., Bunschoten, J., Majoie, M.H.J.M., Thijs, R. D., Ghosh, A. (2022).
A model of healthy aging based on smartphone interactions reveals advanced behavioral age in neurological disease

Digital engagement / Smartphone use

Reichenbacher, T., Aliakbariana, M., Ghosh, A., Fabrikant, S. I. (2022).
Tappigraphy: continuous ambulatory assessment and analysis of in-situ map app use behaviour

Massar, S. A. A., Ng, A. S. C., Soon, C. S., Ong, J. L., Chua, X. Y., Chee, N. I. Y. N., Lee, T. S., Chee, M. W. L. (2021).
Reopening after lockdown: the influence of working-from-home and digital device use on sleep, physical activity, and wellbeing following COVID-19 lockdown and reopening

Westbrook, A., Ghosh, A., van den Bosch, R., Määttä, J. I., Hofmans, L., & Cools, R. (2021).
Striatal dopamine synthesis capacity reflects smartphone social activity.

Pfister, J. P., & Ghosh, A. (2020).
Generalized priority-based model for smartphone screen touches.

Balerna, M., & Ghosh, A. (2018).
The details of past actions on a smartphone touchscreen are reflected by intrinsic sensorimotor dynamics.

Trusted by renowned scientific institutions in Europe, Asia and the US.
imageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimageimage